812 research outputs found

    The preparation of the Shutdown Dose Rate experiment for the next JET Deuterium-Tritium campaign

    Get PDF
    The assessment of the Shutdown Dose Rate (SDR) due to neutron activation is a major safety issue for fusion devices and in the last decade several benchmark experiments have been conducted at JET during Deuterium-Deuterium experiments for the validation of the numerical tools used in ITER nuclear analyses. The future Deuterium-Tritium campaign at JET (DTE2) will provide a unique opportunity to validate the codes under ITER-relevant conditions through the comparison between numerical predictions and measured quantities (C/E). For this purpose, a novel SDR experiment, described in the present work, is in preparation in the frame of the WPJET3-NEXP subproject within EUROfusion Consortium. The experimental setup has been accurately designed to reduce measurement uncertainties; spherical air-vented ionization chambers (ICs) will be used for on-line ex-vessel decay gamma dose measurements during JET shutdown following DT operations and activation foils have been selected for measuring the neutron fluence near ICs during operations. Active dosimeters (based on ICs) have been calibrated over a broad energy range (from about 30 keV to 1.3 MeV) with X and gamma reference beam qualities. Neutron irradiation tests confirmed the capability of active dosimeters of performing on-line decay gamma dose rate measurements, to follow gamma dose decay at the end of neutron irradiation as well as insignificant activation of the ICs

    The in vivo effect of chelidonine on the stem cell system of planarians

    Get PDF
    The presence of adult pluripotent stem cells and the amazing regenerative capabilities make planarian flatworms an extraordinary experimental model to assess in vivo the effects of substances of both natural and synthetic origin on stem cell dynamics. This study focuses on the effects of chelidonine, an alkaloid obtained from Chelidonium majus. The expression levels of molecular markers specific for stem or differentiated cells were compared in chelidonine-treated and control planarians. The use of these markers demonstrates that chelidonine produces in vivo a significant anti-proliferative effect on planarian stem cells in a dosedependent fashion. In response to chelidonine treatment mitotic abnormalities were also observed and the number of cells able to proceed to anaphase/telophase appeared significantly reduced with respect to the controls. Our results support the possibility that chelidonine acts on cell cycle progression by inhibition of tubulin polymerization. These studies provide a basis for preclinical evaluation in vivo of the effects of chelidonine on physiologically proliferating stem cells

    Mixed n–γ fields dosimetry at low doses by means of different solid state dosimeters

    Get PDF
    Abstract A Mock-up of the inboard shield of the ITER International nuclear fusion reactor was realized at the Frascati Neutron Generator (FNG) at ENEA Frascati with the scope to measure the nuclear heating (total dose) in the superconducting coils. High sensitivity MCP-6 and MCP-7 dosimeters were used to measure the low

    Planarians as a model to assess in vivo the role of matrix metalloproteinase genes during homeostasis and regeneration

    Get PDF
    Matrix metalloproteinases (MMPs) are major executors of extracellular matrix remodeling and, consequently, play key roles in the response of cells to their microenvironment. The experimentally accessible stem cell population and the robust regenerative capabilities of planarians offer an ideal model to study how modulation of the proteolytic system in the extracellular environment affects cell behavior in vivo. Genome-wide identification of Schmidtea mediterranea MMPs reveals that planarians possess four mmp-like genes. Two of them (mmp1 and mmp2) are strongly expressed in a subset of secretory cells and encode putative matrilysins. The other genes (mt-mmpA and mt-mmpB) are widely expressed in postmitotic cells and appear structurally related to membrane-type MMPs. These genes are conserved in the planarian Dugesia japonica. Here we explore the role of the planarian mmp genes by RNA interference (RNAi) during tissue homeostasis and regeneration. Our analyses identify essential functions for two of them. Following inhibition of mmp1 planarians display dramatic disruption of tissues architecture and significant decrease in cell death. These results suggest that mmp1 controls tissue turnover, modulating survival of postmitotic cells. Unexpectedly, the ability to regenerate is unaffected by mmp1(RNAi). Silencing of mt-mmpA alters tissue integrity and delays blastema growth, without affecting proliferation of stem cells. Our data support the possibility that the activity of this protease modulates cell migration and regulates anoikis, with a consequent pivotal role in tissue homeostasis and regeneration. Our data provide evidence of the involvement of specific MMPs in tissue homeostasis and regeneration and demonstrate that the behavior of planarian stem cells is critically dependent on the microenvironment surrounding these cells. Studying MMPs function in the planarian model provides evidence on how individual proteases work in vivo in adult tissues. These results have high potential to generate significant information for development of regenerative and anti cancer therapies

    Development of On-Line Tritium Monitor Based Upon Artificial Diamond for Fusion Applications

    Get PDF
    In this paper a novel on-line tritium monitor is presented. It is made with a single crystal diamond detector (SCD) covered with a thin layer of LiF 95% enriched in <sup>6</sup>Li. Thermal neutrons impinging on the LiF layer produce α and T ions which are detected by the active diamond. The pulse height spectrum shows two separated peaks due to α and T ions respectively. By a proper calibration in a reference thermal flux the number of <sup>6</sup>Li atoms and thus the absolute n+<sup>6</sup>Li→α+T reaction rate per unitary flux can be established. Once calibrated the detector can be used to measure the tritium production. Due to the many outstanding properties of diamond this detector could operate in the harsh working conditions of a fusion breeding blanket. A test of this detector was performed at the 14 MeV Frascati Neutron Generator (FNG). The detector was inserted inside a mock-up of the European Helium Cooled Lithium Lead (HCLL) Tritium Blanket Module (TBM), designed to validate the neutronic database for fusion application. The mock-up of the TBM was designed to perform a full set of experiments to validate tritium production code prediction comparing the experimental results with calculations. The measured tritium rates with the Li-Diamond detector are described in this paper. Comparison with calculations is in progress and will be reported in a future paper

    Distribution and phylogeny of Penelope-like elements in eukaryotes

    Get PDF
    Author Posting. © Society of Systematic Biologists, 2006. This article is posted here by permission of Oxford University Press for personal use, not for redistribution. The definitive version was published in Systematic Biology 55 (2006): 875-885, doi:10.1080/10635150601077683.Penelope-like elements (PLEs) are a relatively little studied class of eukaryotic retroelements, distinguished by the presence of the GIY-YIG endonuclease domain, the ability of some representatives to retain introns, and the similarity of PLE-encoded reverse transcriptases to telomerases. Although these retrotransposons are abundant in many animal genomes, the reverse transcriptase moiety can also be found in several protists, fungi, and plants, indicating its ancient origin. A comprehensive phylogenetic analysis of PLEs was conducted, based on extended sequence alignments and a considerably expanded data set. PLEs exhibit the pattern of evolution similar to that of non-LTR retrotransposons, which form deep-branching clades dating back to the Precambrian era. However, PLEs seem to have experienced a much higher degree of lineage losses than non-LTR retrotransposons. It is suggested that PLEs and non-LTR retrotransposons are included into a larger eTPRT (eukaryotic target-primed) group of retroelements, characterized by 5' truncation, variable target-site duplication, and the potential of the 3' end to participate in formation of non-autonomous derivatives.This work was supported by the U.S. National Science Foundation (MCB 0614142)

    ITER oriented neutronics benchmark experiments on neutron streaming and shutdown dose rate at JET

    Get PDF
    Neutronics benchmark experiments are conducted at JET in the frame of WPJET3 NEXP within EUROfusion Consortium for validating the neutronics codes and tools used in ITER nuclear analyses to predict quantities such as the neutron flux along streaming paths and dose rates at the shutdown due to activated components. The preparation of neutron streaming and shutdown dose rate experiments for the future Deuterium-Tritium operations (DTE2 campaign) are in progress. This paper summarizes the status of measurements and analyses in progress in the current Deuterium–Deuterium (DD) campaign and the efforts in preparation for DTE2
    • …
    corecore